Fully Neural Network based Model for General Temporal Point Processes

Takahiro Omi^{1,3}, Naonori Ueda^{2,3}, Kazuyuki Aihara¹

¹ The University of Tokyo, ² NTT Communication Science Laboratories, ³ RIKEN AIP

Temporal Point Process

- A temporal point process is a mathematical model of temporally discrete events such as earthquakes, financial transactions, communication in a social network, user activity at a web site. and so on.
- ✓ Conditional Intensity function characterizes the temporal point process:

$$\lambda(t|H_t) = \lim_{\Delta \to 0} \frac{P(\text{one event occurs in } [t, t + \Delta)|H_t)}{\Delta}$$

✓ Parametric models of the conditional intensity function:

Background: RNN based Approach to Point Processes

- ✓ The RNN based model aims at flexibly modeling the dependence of the event occurrence on the event history.
- ✓ The RNN is used to encode the event history. Then the conditional intensity function is formulated via the hazard function as

✓ The parametric model of the hazard function $\phi(t - t_i | h_i)$:

$$\phi(\tau|\mathbf{h}_i) = \exp(w\tau + v \cdot \mathbf{h}_i + b)$$
 (Exponential hazard function [2])
$$\phi(\tau|\mathbf{h}_i) = \exp(v \cdot \mathbf{h}_i + b)$$
 (Constant hazard function [3])

Problem

- ✓ The hazard function is usually modeled by a specific parametric function. However such an assumption can limit the expressive power of the model.
- ✓ If we use a complex model for the hazard function, the log-likelihood function cannot be exactly evaluated ¹/₂. This is because the loglikelihood function of the model,

$$\log L\left(\left\{t_{i}\right\}\right) = \sum_{i} \left\{\log \phi(t_{i} - t_{i-1}|\boldsymbol{h_{i}}) - \int_{0}^{t_{i} - t_{i-1}} \phi(\tau|\boldsymbol{h_{i}}) \, d\tau\right\},$$

includes the integral of the hazard function.

Method

Our novel approach

✓ Instead of the hazard function, we model the cumulative hazard function,

$$\Phi(\tau|\mathbf{h}_i) = \int_0^{\tau} \phi(s|\mathbf{h}_i) ds.$$

✓ The hazard function is given by differentiating the cumulative hazard function,

$$\phi(\tau|\mathbf{h}_i) = \frac{\partial}{\partial \tau} \Phi(\tau|\mathbf{h}_i).$$

√ The log-likelihood function of the model is reformulated as

$$\log L\left(\left\{t_{i}\right\}\right) = \sum_{i} \left[\log\left\{\frac{\partial}{\partial \tau} \Phi(\tau = t_{i} - t_{i-1} | \boldsymbol{h}_{i})\right\} - \Phi(t_{i} - t_{i-1} | \boldsymbol{h}_{i})\right]$$

This can be exactly evaluated even for a complex model of the cumulative hazard function!

Proposed model

√ The feedforward neural network model of the cumulative hazard function

The cumulative hazard function is a monotonically increasing function of τ , which can be reproduced by constraining the particular network connections to be positive [1].

Our contribution

- ✓ (Flexibility) The hazard function can be flexibly modeled.
- ✓ (<u>Efficiency</u>) The log-likelihood function can be exactly evaluated without any numerical approximations, so that the model can be efficiently trained.

Related works

	Flexibility	Closed-form likelihood
Exponential hazard function [2]		✓
Constant hazard function [3]		✓
Piecewise constant hazard function [4]	?	✓
(Proposed) Neural cumulative hazard function	√	✓
Continuous-time LSTM model [5]	√	

* The continuous-time model employs a quite different network architecture than the other RNN based models.

Experiments

√ The proposed model is better or similar than the other models

✓ The constant or exponential hazard function is sensitive to model misspecification.

Real datasets

✓ Our model also performs better than the other models for the real datasets

We also confirmed

- ✓ Our model also outperforms the other models for a timing prediction task where the predictive performance is evaluated by the mean absolute error.
- ✓ Our model outperforms the state-of-the-art continuous-time LSTM model (see the paper for the details).