Fully Neural Network based Model for General Temporal Point Processes

Temporal Point Process
v A temporal point process is a mathematical model of temporally discrete events such as

earthquakes, financial transactions, communication in a social network, user activity at a web
site, and so on.

v’ Conditional Intensity function characterizes the temporal point process:
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v Parametric models of the conditional intensity function:
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Background: RNN based Approach to Point Processes

v The RNN based model aims at flexibly modeling the dependence of the event occurrence on
the event history.

v The RNN is used to encode the event history. Then the conditional intensity function is
formulated via the hazard function as
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v’ The parametric model of the hazard function ¢ (t — t;|h;):

¢(tlh)) = exp(wt +v - hj + b)
¢(tlh;) = exp(v- h; + b)

(Exponential hazard function [2])
(Constant hazard function [3])

Problem

v The hazard function is usually modeled by a specific parametric function. However such an
assumption can limit the expressive power of the model.

v If we use a complex model for the hazard function, the log-likelihood function cannot be
exactly evaluated@. This is because the loglikelihood function of the model,
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includes the integral of the hazard function.

Takahiro Omi'3, Naonori Ueda?3, Kazuyuki Aihara’

" The University of Tokyo, 2NTT Communication Science Laboratories, 2 RIKEN AIP

Method

Our novel approach

v Instead of the hazard function, we model the cumulative hazard function,
T
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v' The hazard function is given by differentiating the cumulative hazard function,

PLelh) = 3-0(clhy).

v The log-likelihood function of the model is reformulated as
d
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&This can be exactly evaluated even for a complex model of the cumulative hazard
function!!

Proposed model
v The feedforward neural network model of the cumulative hazard function

The cumulative hazard function is a monotonically increasing function of 7, which can be
reproduced by constraining the particular network connections to be positive [1].
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Our contribution
v (Elexibility) The hazard function can be flexibly modeled.

v (Efficiency) The log-likelihood function can be exactly evaluated without any numerical
approximations, so that the model can be efficiently trained.

Related works

Flexibility Closed-form likelihood

Exponential hazard function [2]

Constant hazard function [3]

Piecewise constant hazard function [4]
(Proposed) Neural cumulative hazard function

Continuous-time LSTM model [5]

* The continuous-time model employs a quite different network architecture than the other RNN based models.

Experiments
Synthetic datasets
non-stationary Poisson

v Seven simulated sequences.
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* The mean inter-event interval is 1 for all the sequences.
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v The proposed model is better or similar than the other models.
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v The constant or exponential hazard function is sensitive to model misspecification.
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Real datasets

v Our model also performs better than the other models for the real datasets.
predicting skill for real data
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We also confirmed an

v Our model also outperforms the other models for a timing prediction task where the
predictive performance is evaluated by the mean absolute error.
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average negative log-likelihood
relative to the NN based model

v Our model outperforms the state-of-the-art continuous-time LSTM model (see the paper for
the details).
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